How do you integrate int [s(s+6)] / [(s+3)(s^2+6s+18)] using partial fractions?

1 Answer
Dec 19, 2016

The answer is ==-ln(∣s+3∣)+ln(∣s^2+6s+18∣)+C

Explanation:

Let's do the decomposition into partial fractions

(s(s+6))/((s+3)(s^2+6s+18))=A/(s+3)+(Bs+C)/(s^2+6s+18)

=(A(s^2+6s+18)+(Bs+C)(x+3))/((s+3)(s^2+6s+18))

So

s(s+6)=A(s^2+6s+18)+(Bs+C)(s+3)

Let s=0, =>, 0=18A+3C, =>, C=-6A

Let s=-3, =>, -9=9A, =>, A=-1

Coefficients of s^2, =>, 1=A+B, =>, B=2

Therefore,

(s(s+6))/((s+3)(s^2+6s+18))=-1/(s+3)+(2s+6)/(s^2+6s+18)

int(s(s+6)ds)/((s+3)(s^2+6s+18))=int-(ds)/(s+3)+int((2s+6)ds)/(s^2+6s+18)

=-ln(∣s+3∣)+ln(∣s^2+6s+18∣)+C