Calculate the indefinite integral first
Perform the substitution
#u=e^x#, #=>#, #du=e^xdx#
Therefore,
#I=int(e^xdx)/(sqrt(e^(2x)+1))#
#=int(du)/(sqrt(u^2+1))#
Let #u=tantheta#, #=>#, #du=sec^2thetad theta#
#sqrt(u^2+1)=sqrt(tan^2theta+1)=sectheta#
Therefore,
#I=int(sec^2thetad theta)/(sectheta)=int sec thetad theta#
#=int(sectheta(sectheta+tantheta)d theta)/(sectheta+tantheta)#
Let,
#v=sectheta+tantheta#, #=>#,
#dv=(secthetatantheta+sec^2theta)d theta#
So,
#I=int(dv)/(v)#
#=ln(v)#
#=ln(sectheta+tantheta)#
#=ln(sqrt(1+u^2)+u)#
#=ln(sqrt(1+e^(2x))+e^x)+C#
Now, compute the definite integral
#int_ln2^ln3(e^xdx)/(sqrt(e^(2x)+1))= [ln(sqrt(1+e^(2x))+e^x)]_ln2^ln3#
#=(ln(sqrt(1+e^(2ln3))+e^ln3))-(ln(sqrt(1+e^(2ln2))+e^ln2))#
#=(ln(sqrt10+3))-(ln(sqrt5+2))#
#=0.37#