How do you integrate int e^(sec2x)sec2xtan2xdx from [pi/3,pi/2]? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer trosk Apr 21, 2017 1/2 * (e^(-1) - e^(-2)) Explanation: d/dx(sec 2x) = d/dx (1/(cos 2x)) = - 1/(cos 2x)^2 * (-sin 2x) * 2 = sec 2x * tan 2x * 2 Hence d/dx e^(sec 2x) = e^(sec 2x) * d/dx(sec 2x) = e^(sec 2x) * sec 2x * tan 2x * 2 So int_(pi/3)^(pi/2) e^(sec2x)sec2xtan2xdx = 1/2 e^(sec 2x)|_(pi/3)^(pi/2) = 1/2 * (e^(-1) - e^(-2)) Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 3004 views around the world You can reuse this answer Creative Commons License