How do you integrate int (e^(2x)+2e^x+1)/(e^x)dx?

1 Answer
Nov 3, 2016

=e^x+2x-e^(-x)+C

Explanation:

Inegrating the given rational function is determined by decomposing
" "
the given fraction into partial ones
" "
int(e^(2x)+2e^x+1)/e^xdx
" "
=int(e^(2x))/e^xdx +int(2e^x)/e^xdx+int1/e^xdx
" "
=inte^xdx+int2dx+inte^(-x)dx
" "
Knowing that
" "
color(red)(d(e^x)=e^xdx and
" "
color(purple)(d(e^(-x))=-e^xrArre^(-x)=-d(e^(-x))
" "
=intcolor(red)(d(e^x))+int2dx+intcolor(purple)(-d(e^(-x))
" "
=e^x+2x-e^(-x)+C