How do you integrate int e^(2x)/(1+e^(2x))dx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Narad T. ยท mason m Nov 21, 2016 The answer is =1/2ln(1+e^(2x))+C Explanation: Let's do it by substitution Let u=1+e^(2x) then, du=2e^(2x)dx int(e^(2x)dx)/(1+e^(2x)) =1/2int(du)/u=1/2lnabsu =1/2ln(1+e^(2x))+C Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 8059 views around the world You can reuse this answer Creative Commons License