How do you integrate #int e^(2x)/(1+e^(2x))dx#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Narad T. · mason m Nov 21, 2016 The answer is #=1/2ln(1+e^(2x))+C# Explanation: Let's do it by substitution Let #u=1+e^(2x)# then, #du=2e^(2x)dx# #int(e^(2x)dx)/(1+e^(2x))# #=1/2int(du)/u=1/2lnabsu# #=1/2ln(1+e^(2x))+C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 7285 views around the world You can reuse this answer Creative Commons License