How do you integrate int 6^x-2^xdx∫6x−2xdx from [1,e][1,e]? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Narad T. Dec 19, 2016 The answer is =6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129=6eln6−2eln2−6ln6+2ln2=62.8129 Explanation: Let u=6^xu=6x Then, lnu=xln6lnu=xln6 u=e^(xln6)u=exln6 Let v=2^xv=2x lnv=xln2lnv=xln2 v=e^(xln2)v=exln2 Therefore int_1 ^e(6^x-2^x)dx∫e1(6x−2x)dx =int_1 ^e(e^(xln6)-e^(xln2))dx=∫e1(exln6−exln2)dx = [e^(xln6)/ln6-e^(xln2)/ln2 ]_1^e =[exln6ln6−exln2ln2]e1 = [6^x/ln6-2^x/ln2 ]_1 ^e =[6xln6−2xln2]e1 =(6^e/ln6-2^e/ln2)-(6/ln6-2/ln2)=(6eln6−2eln2)−(6ln6−2ln2) =6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129=6eln6−2eln2−6ln6+2ln2=62.8129 Answer link Related questions How do you evaluate the integral inte^(4x) dx∫e4xdx? How do you evaluate the integral inte^(-x) dx∫e−xdx? How do you evaluate the integral int3^(x) dx∫3xdx? How do you evaluate the integral int3e^(x)-5e^(2x) dx∫3ex−5e2xdx? How do you evaluate the integral int10^(-x) dx∫10−xdx? What is the integral of e^(x^3)ex3? What is the integral of e^(0.5x)e0.5x? What is the integral of e^(2x)e2x? What is the integral of e^(7x)e7x? What is the integral of 2e^(2x)2e2x? See all questions in Integrals of Exponential Functions Impact of this question 1899 views around the world You can reuse this answer Creative Commons License