How do you integrate int 6^x-2^xdx6x2xdx from [1,e][1,e]?

1 Answer
Dec 19, 2016

The answer is =6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129=6eln62eln26ln6+2ln2=62.8129

Explanation:

Let u=6^xu=6x

Then, lnu=xln6lnu=xln6

u=e^(xln6)u=exln6

Let v=2^xv=2x

lnv=xln2lnv=xln2

v=e^(xln2)v=exln2

Therefore

int_1 ^e(6^x-2^x)dxe1(6x2x)dx

=int_1 ^e(e^(xln6)-e^(xln2))dx=e1(exln6exln2)dx

= [e^(xln6)/ln6-e^(xln2)/ln2 ]_1^e =[exln6ln6exln2ln2]e1

= [6^x/ln6-2^x/ln2 ]_1 ^e =[6xln62xln2]e1

=(6^e/ln6-2^e/ln2)-(6/ln6-2/ln2)=(6eln62eln2)(6ln62ln2)

=6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129=6eln62eln26ln6+2ln2=62.8129