How do you integrate int (6-15x)/( (x-1) (x+2) (x-4)) using partial fractions?

1 Answer

color(red)(int (6-15x)/((x-1)(x+2)(x-4)) dx=)

color(red)(ln(x-1)+2ln(x+2)-3ln(x-4)+C_0)

Explanation:

from the given integral, set up the equation using the variables A, B, and C

int (6-15x)/((x-1)(x+2)(x-4)) dx=int(A/(x-1)+B/(x+2)+C/(x-4))dx

(6-15x)/((x-1)(x+2)(x-4))=A/(x-1)+B/(x+2)+C/(x-4)

(6-15x)/((x-1)(x+2)(x-4))=(A(x^2-2x-8)+B(x^2-5x+4)+C(x^2+x-2))/((x-1)(x+2)(x-4))

(6-15x)/((x-1)(x+2)(x-4))
=((A+B+C)x^2+(-2A-5B+C)x^1+(-8A+4B-2C)x^0)/((x-1)(x+2)(x-4))

The equations will be

A+B+C=0
-2A-5B+C=-15
-8A+4B-2C=6

Simultaneous solution results to:

A=1 and B=2 and C=-3

final answer

color(red)(int (6-15x)/((x-1)(x+2)(x-4)) dx=)

color(red)(ln(x-1)+2ln(x+2)-3ln(x-4)+C_0)

God bless....I hope the explanation is useful.