How do you integrate int (5x^2+3x-2)/(x^3+2x^2) using partial fractions?

1 Answer
Jul 18, 2016

1/x+ln|x^2(x+2)^3|+C_1

Explanation:

The Dr.=x^3+2x^2=x^2(x+2)

So, we are having linear repeated factors. In such case, we take,

(5x^2+3x-2)/(x^3+2x^2)=A/x+B/x^2+C/(x+2)....(1), where, A,B,C in RR

=(Ax(x+2)+B(x+2)+Cx^2)/(x^2(x+2))

rArr 5x^2+3x-2=Ax(x+2)+B(x+2)+Cx^2..............(2)

Eventhough (2) is true AAx in RR, we select,

x=0 rArr -2=2B rArr B=-1

x=-2 rArr20-6-2=12=4C rArr C=3

x=1 rArr 5+3-2=6=3A+3B+C=3A-3+3=3A

rArrA=2

:. I=int(5x^2+3x-2)/(x^3+2x^2)dx

=int2/xdx-int1/x^2dx+int3/(x+2)dx

=2lnx+1/x+3ln|x+2|

=1/x+ln|x^2(x+2)^3|+C_1

Hope, this will be of a little Help! Enjoy Maths. & spread the Joy!