How do you integrate int (5x - 10)/ (x^2+2x-35) dx using partial fractions?

1 Answer
Mar 22, 2018

The answer is =15/4ln(|x+7|)+5/4ln(|x-5|)+C

Explanation:

Perform the decomposition into partial fractions

(5x-10)/(x^2+2x-35)=(5x-10)/((x+7)(x-5))=A/(x+7)+B/(x-5)

=(A(x-5)+B(x+7))/((x+7)(x-5))

The denominators are the same, compare the numerators

5x-10=A(x-5)+B(x+7)

Let x=-7, =>, -45=-12A, =>, A=45/12=15/4

Let x=5, =>, 15=12B, =>, A=15/12=5/4

Therefore,

(5x-10)/(x^2+2x-35)=(15/4)/(x+7)+(5/4)/(x-5)

And finally,

int((5x-10)dx)/(x^2+2x-35)=int(15/4dx)/(x+7)+int(5/4dx)/(x-5)

=15/4ln(|x+7|)+5/4ln(|x-5|)+C