How do you integrate #int 5^-xdx#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Matt B. Dec 7, 2016 Using u-substitution: Let #u=-x# #du=-1dx# #=int5^udu# #=5^u/ln5*-1# #=-5^(-x)/ln5# #=-1/(5^xln5)# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 3351 views around the world You can reuse this answer Creative Commons License