How do you integrate 5x3xdx from [0,1]?

2 Answers
May 5, 2017

The answer is =0.66

Explanation:

Let y=5x

Taking log on both sides

lny=xln5

y=exln5

Therefore,

5xdx=exln5dx=exln5ln5=5xln5

Similarly,

y=3x

Taking log on both sides

lny=xln3

y=exln3

Therefore,

3xdx=exln3dx=exln3ln3=3xln3

Therefore,

10(5x3x)dx=105xdx103xdx

=[5xln53xln3]10

=(5ln53ln3)(1ln51ln3)

=4ln52ln3

=0.66

May 5, 2017

The integral has value 4ln(5)2ln(3)

Explanation:

Separating the integrals, we get:

105xdx103xdx

Now use the formula (ax)dx=axln(a).

[5xln5]10[3xln3]10

5ln(5)50ln(5)(3ln330ln3)

4ln(5)2ln(3)

Hopefully this helps!