How do you integrate int (4x - 16) / (x^2 - 2x - 3) using partial fractions?

How do you integrate int (4x - 16) / (x^2 - 2x - 3)dx using partial fractions?

1 Answer
Sep 4, 2016

-ln|x-3|+5ln|x+1|+C,

OR,

ln|(x+1)^5/(x-3)|+C.

Explanation:

Let I=int(4x-16)/(x^2-2x-3)dx=4int(x-4)/((x-3)(x+1))dx

We decompose the Integrand

(x-4)/((x-3)(x+1)) = A/(x-3)+B/(x+1)," where, "A,B in RR.

Using Heavyside's Cover-up Method to find consts. A,B in RR,

A=[(x-4)/(x+1)]_(x=3) =(3-4)/(3+1)=-1/4,

B=[(x-4)/(x-3)]_(x=-1)=(-1-4)/(-1-3)=5/4.

Hence, I=4int[(-1/4)/(x-3)+(5/4)/(x+1)]dx

=-int1/(x-3)dx+5int1/(x+1)dx

:. I=-ln|x-3|+5ln|x+1|+C, or,

I=ln|(x+1)^5/(x-3)|+C.

Enjoy Maths.!