How do you integrate int (3x-2x^2)/((x+9)(x+2)(x-5)) using partial fractions?

1 Answer
Mar 4, 2018

1/14(4ln(x+2)-27ln(x+9)-5ln(x-5))+C

Explanation:

Given: int(3x-2x^2)/((x+9)(x+2)(x-5))dx using partial fractions

Partial Fractions:
(3x-2x^2)/((x+9)(x+2)(x-5)) = A/(x+9) + B/(x+2) + C/(x-5)

3x-2x^2= A(x+2)(x-5) + B(x+9)(x-5) + C(x+9)(x+2)

= A(x^2-3x-10)+B(x^2+4x-45)+C(x^2+11x+18)

rearrange:

3x-2x^2= x^2(A+B+C) +x(-3A+4B+11C) + (-10A-45B+18C)

Write 3 equations:
(1):" "A+B+C = -2

(2):" "-3A+4B+11C = 3

(3):" "-10A-45B+18C = 0

Combine equations to solve:
3*(1)+(2): 3A + 3B + 3C = -6
" "ul(-3A+4B+11C = 3" ")
" "7B +14C = -3

10(2) - 3(3): -30A +40B+110C =30
" "ul(30A +135B-54C = 0" ")
" "175B+56C = 30

Combine two new equations to solve for B:
175B+56C = 30
ul(-28B-56C=12)
147B" "=42; " " B = 2/7 = 4/14

Back-substitute to find C:
7*2/7 +14C = -3; " "14C = -5; " " C = -5/14

Back-substitute to find A:
A +2/7 -5/14 =-2; " " A = -27/14

int(3x-2x^2)/((x+9)(x+2)(x-5))dx = int(-27 dx)/(14(x+9)) +int(2 dx)/(7(x+2)) +int(-5 dx)/(14(x-5))

= 1/14(4ln(x+2)-27ln(x+9)-5ln(x-5))+C