How do you integrate int (3x^2 + 10x -5)/ ( (x+1)^2(x-2) ) using partial fractions?

1 Answer
Jul 19, 2017

int(3x^2+10x-5)/((x+1)^2(x-2))dx=-4/(x+1)+3ln|x-2| +C

Explanation:

Let's start with :

(3x^2+10x-5)/((x+1)^2(x-2))=A/(x+1)+B/(x+1)^2+C/(x-2)=

(A(x+1)(x-2)+B(x-2)+C(x+1)^2)/((x+1)^2(x-2))=

(A(x^2-x-2)+Bx-2B+C(x^2+2x+1))/((x+1)^2(x-2))=

(Ax^2-Ax-2A+Bx-2B+Cx^2+2Cx+C)/((x+1)^2(x-2))=

((A+C)x^2+(-A+B+2C)x+(-2A-2B+C))/((x+1)^2(x-2))

So we know now :

A+C=3
-A+B+2C=10
-2A-2B+C=-5

From this system we get :

A=0, B=4, C=3

Let's get to the integral now:

int(3x^2+10x-5)/((x+1)^2(x-2))dx=int(4/(x+1)^2+3/(x-2))dx=

int4/(x+1)^2dx+int3/(x-2)dx=

int4(x+1)^(-2)dx+3ln|x-2|=

-4(x+1)^(-1)+3ln|x-2|=

-4/(x+1)+3ln|x-2| +C