How do you integrate int (3-x)7^((3-x) ^2)dx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Andrea S. Dec 21, 2016 int (3-x)7^((3-x)^2)dx=-(7^((3-x)^2))/(2ln7)+C Explanation: Substitute t=(3-x)^2, dt=-2(3-x)dx, and consider that 7^alpha= e^(alphaln7): int (3-x)7^((3-x)^2)dx= -1/2int e^(ln7t)dt=-1/2ln7e^(ln7t)+C=-(7^((3-x)^2))/(2ln7)+C Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 4092 views around the world You can reuse this answer Creative Commons License