How do you integrate int (3-x)7^((3-x) ^2)dx?

1 Answer
Dec 21, 2016

int (3-x)7^((3-x)^2)dx=-(7^((3-x)^2))/(2ln7)+C

Explanation:

Substitute t=(3-x)^2, dt=-2(3-x)dx, and consider that 7^alpha= e^(alphaln7):

int (3-x)7^((3-x)^2)dx= -1/2int e^(ln7t)dt=-1/2ln7e^(ln7t)+C=-(7^((3-x)^2))/(2ln7)+C