How do you integrate int (2x^5 -x^3 -1) / (x^3 -4x) dx using partial fractions?

1 Answer
Mar 26, 2017

2/3x^3+7x+7ln|(x-2)/(x+2)|+1/4ln|x|-1/8ln|x-2|-1/8ln|x+2|+C,

or,

2/3x^3+7x+1/4ln|x|+55/8ln|x-2|-57/8ln|x+2|+C.

Explanation:

The Integrand, (2x^5-x^3-1)/(x^3-4x) is Improper Rational,

because," the Deg. of Nr., "5 gt 3,"the Deg. of Dr." Hence, first

Long Division is required. But we can avoid it as shown below:

2x^5-x^3-1=ul(2x^5-8x^3)+ul(7x^3-28x)+28x-1

=2x^3(x^2-4)+7x(x^2-4)+28x-1.

:. (2x^5-x^3-1)/(x^3-4x)={2x^3(x^2-4)+7x(x^2-4)+28x-1}/{x(x^2-4)}

={2x^3(x^2-4)}/{x(x^2-4)}+{7x(x^2-4)}/{x(x^2-4)}+(28x)/{x(x^2-4)}-1/{x(x^2-4)}

=2x^2+7+28/(x^2-4)-1/{x(x^2-4)}

:. I=int(2x^5-x^3-1)/(x^3-4x)dx

=2intx^2dx+7int1dx+28int1/{x^2-(2)^2}dx-int1/{x(x-2)(x+2)}dx.

=2x^3/3+7x+28{1/(2*2)ln|(x-2)/(x+2)|}-J,

=2/3x^3+7x+7ln|(x-2)/(x+2)|-J, where,

J=int1/{x(x-2)(x+2)}dx.

Here, we will use the Method of Partial Fraction to find J as

shown below:

We let, 1/{x(x-2)(x+2)}=A/x+B/(x-2)+C/(x+2); A,B,C in RR.

A, B, C can be easily determined by Heaviside's Method as,

A=[1/{(x-2)(x+2)}]_(x=0)=-1/4;

B=[1/{x(x+2)}]_(x=2)=(1/2)(1/(2+2))=1/8; and,

C=[1/{x(x-2)}]_(x=-2)=(1/-2)(1/(-2-2))=1/8.

Therefore, we have,

J=-1/4int1/xdx+1/8int1/(x-2)dx+1/8int1/(x+2)dx,

=-1/4ln|x|+1/8ln|x-2|+1/8ln|x+2|.

Altogether, we have,

I=2/3x^3+7x+7ln|(x-2)/(x+2)|+1/4ln|x|-1/8ln|x-2|-1/8ln|x+2|+C, or,

=2/3x^3+7x+1/4ln|x|+55/8ln|x-2|-57/8ln|x+2|+C.

Enjoy Maths.!