int (2x-5)/(x^2-4x+5)
2x-5=2x-4-1
int (2x-5)/(x^2-4x+5)=int (2x-4-1)/(x^2-4x+5)d x
"split the integration"
int (2x-5)/(x^2-4x+5)=color(red)(int (2x-4)/(x^2-4x+5)d x)-color(green)(int1/(x^2-4x+5)d x)
color(red)(int (2x-4)/(x^2-4x+5)d x)
"Substitute "u=x^2-4x+5" ; " d u=2x-4
color(red)(int (2x-4)/(x^2-4x+5)d x)=int (d u)/u=l n u
"Undo substitution"
color(red)(int (2x-4)/(x^2-4x+5)d x)=l n(|x^2-4x+5|)
color(green)(int1/(x^2-4x+5)d x)=
x^2-4x+5=(x-2)^2+1
"please remember that "int (d x)/(x^2+a^2)=1/a arc tan (x/a)+C
color(green)(int1/(x^2-4x+5)d x)=int (d x)/((x-2)^2+1)=arc tan (x-2)
int (2x-5)/(x^2-4x+5)=l n(|x^2-4x+5|-arc tan(x-2))+C