How do you integrate int (2x-5) / (x^2 -4x+ 5) using partial fractions?

1 Answer
Aug 11, 2016

int (2x-5)/(x^2-4x+5)=l n(|x^2-4x+5|-arc tan(x-2))+C

Explanation:

int (2x-5)/(x^2-4x+5)

2x-5=2x-4-1

int (2x-5)/(x^2-4x+5)=int (2x-4-1)/(x^2-4x+5)d x

"split the integration"

int (2x-5)/(x^2-4x+5)=color(red)(int (2x-4)/(x^2-4x+5)d x)-color(green)(int1/(x^2-4x+5)d x)

color(red)(int (2x-4)/(x^2-4x+5)d x)

"Substitute "u=x^2-4x+5" ; " d u=2x-4

color(red)(int (2x-4)/(x^2-4x+5)d x)=int (d u)/u=l n u

"Undo substitution"

color(red)(int (2x-4)/(x^2-4x+5)d x)=l n(|x^2-4x+5|)

color(green)(int1/(x^2-4x+5)d x)=

x^2-4x+5=(x-2)^2+1

"please remember that "int (d x)/(x^2+a^2)=1/a arc tan (x/a)+C

color(green)(int1/(x^2-4x+5)d x)=int (d x)/((x-2)^2+1)=arc tan (x-2)

int (2x-5)/(x^2-4x+5)=l n(|x^2-4x+5|-arc tan(x-2))+C