How do you integrate #int (2x-5)/(x^2+2x+2)dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer maganbhai P. Mar 24, 2018 #I=ln|x^2+2x+2|-7tan^-1(x+1)+c# Explanation: We know that #color(red)((1) int(f^'(x))/(f(x))dx=ln|f(x)|+c# #color(red)((2)int1/(U^2+1)dx=tan^-1U+c# Now #I=int(2x-5)/(x^2+2x+2)dx# #=int(2x+2-7)/(x^2+2x+2)dx# #=int(2x+2)/(x^2+2x+2)dx-int(7)/(x^2+2x+2)dx# #=int(d/(dx)(x^2+2x+2))/(x^2+2x+2)dx-7int1/(x^2+2x+1+1)dx# #I=int(d/(dx)(x^2+2x+2))/(x^2+2x+2)dx-7int1/((x+1)^2+1)dx# Using #color(red)((1) and (2),# we get #I=ln|x^2+2x+2|-7tan^-1(x+1)+c# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 14221 views around the world You can reuse this answer Creative Commons License