How do you integrate int (2x^3 -x^2)/((x^2 +1)^2) using partial fractions?

1 Answer
Sep 13, 2017

int [(2x^3-x^2)*dx]/(x^2+1)^2

=int (2x^2-x)/4*(4x*dx)/(x^2+1)^2

=(2x^2-x)/4*-1/(x^2+1)-int [(4x-1)/4*dx]*(-1)/(x^2+1)

=-(2x^2-x)/(4x^2+4)+1/4*int [(4x-1)*dx]/(x^2+1)

=-(2x^2-x)/(4x^2+4)+1/2int (2x*dx)/(x^2+1)-1/4int dx/(x^2+1)

=-(2x^2-x)/(4x^2+4)+1/2ln(x^2+1)-1/4*arctanx+C

Explanation:

I used integration by parts with u=(2x^2-x)/4 and dv=(4x*dx)/(x^2+1)^2