How do you integrate int (2x^2+9x-6) / (x^2+x-6) using partial fractions?

1 Answer
Dec 18, 2016

The answer is =2x+3ln(∣x+3∣)+4ln(∣x-2∣)+C

Explanation:

We need to simplify the expression

The denominator is x^2+x-6=(x+3)(x-2)

Let's do a long division

color(white)(aaaa)2x^2+9x-6color(white)(aaaa)x^2+x-6

color(white)(aaaa)2x^2+2x-12color(white)(aaaa)2

color(white)(aaaaaa)0+7x+6

(2x^2+9x-6)/(x^2+x-6)=2+(7x+6)/(x^2+x-6)

We can now do the decomposition into partial fractions

(2x+6)/(x^2+x-6)=(7x+6)/((x+3)(x-2))

=A/(x+3)+B/(x-2)

=(A(x-2)+B(x+3))/((x+3)(x-2))

Therefore,

7x+6=A(x-2)+B(x+3)

Let x=2, =>. 20=5B, =>, B=4

Let x=-3, =>, -15=-5A, =>, A=3

(2x^2+9x-6)/(x^2+x-6)=2+(7x+6)/(x^2+x-6)=2+3/(x+3)+4/(x-2)

int((2x^2+9x-6)dx)/(x^2+x-6)=int2dx+3intdx/(x+3)+4intdx/(x-2)

=2x+3ln(∣x+3∣)+4ln(∣x-2∣)+C