How do you integrate int (2x-2)/ ((8 + 2x - x^2)^(1/2))dx2x2(8+2xx2)12dx using partial fractions?

1 Answer
Nov 2, 2016

The answer is =-2sqrt(8+2x-x^2)+C=28+2xx2+C

Explanation:

You can integrate only by substitution.
Let u=8+2x-x^2u=8+2xx2 =>du=(2-2x)dx=-(2x-2)dxdu=(22x)dx=(2x2)dx
int((2x-2)dx)/(sqrt(8+2x-x^2))=-int(du)/sqrtu=-u^(-1/2+1)/(-1/2+1)(2x2)dx8+2xx2=duu=u12+112+1
=-2sqrtu=-2sqrt(8+2x-x^2)+C=2u=28+2xx2+C