How do you integrate int (2x+1)/((x+8)(x-2)(x-3)) using partial fractions?

1 Answer
Jan 31, 2017

The answer is =-3/22ln(|x+8|)-1/2ln(|x-2|)+7/11ln(|x-3|)+C

Explanation:

Let's perform the decomposition into partial fractions

(2x+1)/((x+8)(x-2)(x-3))=A/(x+8)+B/(x-2)+C/(x-3)

=(A(x-2)(x-3)+B(x+8)(x-3)+C(x+8)(x-2))/((x+8)(x-2)(x-3))

As the denominators are the same, we can equalise the numerators

(2x+1)=A(x-2)(x-3)+B(x+8)(x-3)+C(x+8)(x-2)

Let x=-8, =>, -15=110A, =>, A=-3/22

Let x=2, =>, 5=-10B, =>, B=-1/2

Let x=3, =>, 7=11C, =>, C=7/11

Therefore,

(2x+1)/((x+8)(x-2)(x-3))=(-3/22)/(x+8)+(-1/2)/(x-2)+(7/11)/(x-3)

So,

int((2x+1)dx)/((x+8)(x-2)(x-3))=-3/22intdx/(x+8)-1/2intdx/(x-2)+7/11intdx/(x-3)

=-3/22ln(|x+8|)-1/2ln(|x-2|)+7/11ln(|x-3|)+C