How do you integrate int (2x+1)/((x-4)(x-1)(x+7)) using partial fractions?

1 Answer
Dec 9, 2016

The answer is =3/11ln(∣x-4∣)-1/8ln(∣x-1∣)-13/88ln(∣x+7∣)+C

Explanation:

Let's do the decomposition into partial fractions

(2x+1)/((x-4)(x-1)(x+7))=A/(x-4)+B/(x-1)+C/(x+7)

=(A(x-1)(x+7)+B(x-4)(x+7)+C(x-1)(x-4))/((x-4)(x-1)(x+7))

Therefore,

2x+1=A(x-1)(x+7)+B(x-4)(x+7)+C(x-1)(x-4)

Let x=1, =>,3=-24B, =>, B=-1/8

Let x=4, =>,9=33A, =>, A=3/11

Let x=-7, =>, -13=88C, =>C=-13/88

So,

(2x+1)/((x-4)(x-1)(x+7))=(3/11)/(x-4)-(1/8)/(x-1)-(13/88)/(x+7)

int((2x+1)dx)/((x-4)(x-1)(x+7))=3/11intdx/(x-4)-1/8intdx/(x-1)-13/88intdx/(x+7)

=3/11ln(∣x-4∣)-1/8ln(∣x-1∣)-13/88ln(∣x+7∣)+C