How do you integrate int (2x+1)/((x+3)(x-2)(x-3)) using partial fractions?

1 Answer
Apr 19, 2016

-1/6lnabs(x+3)-lnabs(x-2)+7/6lnabs(x-3)+C

Explanation:

First, focus on writing the fraction in terms of partial fractions:

(2x+1)/((x+3)(x-2)(x-3))=A/(x+3)+B/(x-2)+C/(x-3)

Multiply both sides by (x+3)(x-2)(x-3):

2x+1=A(x-2)(x-3)+B(x+3)(x-3)+C(x+3)(x-2)

Expand:

2x+1=A(x^2-5x+6)+B(x^2-9)+C(x^2+x-6)

Sort by degree:

2x+1=x^2(A+B+C)+x(-5A+C)+(6A-9B-6C)

Giving the system:

{(A+B+C=0),(-5A+C=2),(6A-9B-6C=1):}

Solving which gives:

{(A=-1/6),(B=-1),(C=7/6):}

Thus, we know that

int(2x+1)/((x+3)(x-2)(x-3))dx=int-1/(6(x+3))-1/(x-2)+7/(6(x-3))dx

Splitting up the integral and refactoring constants:

=-1/6int1/(x+3)dx-int1/(x-2)dx+7/6int1/(x-3)dx

=-1/6lnabs(x+3)-lnabs(x-2)+7/6lnabs(x-3)+C