How do you integrate 2x1(x1)3(x2) using partial fractions?

1 Answer
Jul 9, 2017

I decomposed integrand into basic fractions,

2x1(x1)3(x2)=Ax1+B(x1)2+C(x1)3+Dx2

(2x1)=A(x34x2+5x2)+B(x23x+2)+C(x2)+D(x33x2+3x1)

Let x=1, C=1 or C=1.

Let x=2, D=3.

Differentiate both sides,

2=A(3x28x+5)+B(2x3)+C+D(3x26x+3)

Let x=1, B+C=2 or B1=2. Hence B=3

Differentiate both sides,

0,=A(6x8)+2B+D(6x6)

Let x=1, 2A+2B=0 or A=B=3.

Thus,

2x1(x1)3(x2)dx

=3x1dx+3(x1)2dx++1(x1)3dx+3x2dx

=3ln(x1)+3x1+12(x1)2+3ln(x2)+C

=3x1+12(x1)2+3ln(x2x1)+C

Explanation:

I decomposed integrand into basic fractions.