How do you integrate int (2x+1)/(4x^2+12x-7) dx using partial fractions?

1 Answer
Oct 26, 2016

The integral int((2x+1)dx)/(4x^2+12x-7)=3/8ln(2x+7)+1/8ln(2x-1)+C

Explanation:

Let's factorise the denominator
4x^2+12x-7=(2x+7)(2x-1)

We look for the partial fractions
(2x+1)/(4x^2+12x-7)=A/(2x+7)+B/(2x-1)

(2x+1)/(4x^2+12x-7)=(A(2x-1)+B(2x+7))/(4x^2+12x-7)

so, 2x+1=A(2x-1)+B(2x+7))
Let x=1/2 =>2=8B =>B=1/4
Let x=0=>1=-A+7/4=>A=3/4

(2x+1)/(4x^2+12x-7)=(3/4)/(2x+7)+(1/4)/(2x-1)
Let's do the integral
int((2x+1)dx)/(4x^2+12x-7)=int((3/4)dx)/(2x+7)+int((1/4)dx)/(2x-1)

=3/8ln(2x+7)+1/8ln(2x-1)+C