How do you integrate int 2^xdx from [-1,2]?

1 Answer
Dec 15, 2016

The answer is =7/(2ln2)=5.05

Explanation:

Let u=2^x

lnu=xln2

u=e^(xln2)

int2^xdx=inte^(xln2)dx=e^(xln2)/ln2=2^x/ln2

int_-1^2 2^xdx= [2^x/ln2] _-1^2

=1/ln2(2^2-1/2)

=1/ln2*7/2=5.05