How do you integrate int 2/((x^4-1)dx using partial fractions?

1 Answer

int 2/(x^4-1) dx=-tan^-1 x-1/2ln(x+1)+1/2ln(x-1)+C_0

Explanation:

int 2/(x^4-1) dx

for the partial fraction

2/(x^4-1) =2/((x^2+1)(x^2-1))=(Ax+B)/(x^2+1)+C/(x+1)+D/(x-1)

2=(Ax+B)(x^2-1)+C(x^2+1)(x-1)+D(x^2+1)(x+1)

We now have the equation

2=Ax^3+Bx^2-Ax-B+C(x^3+x-x^2-1)+D(x^3+x+x^2+1)

and then

A+C+D=0" "first equation
B-C+D=0" "second equation
-A+C+D=0" "third equation
-B-C+D=2" "fourth equation

simultaneous solution results to

A=0
B=-1
C=-1/2
D=1/2

int 2/(x^4-1) dx =int(Ax+B)/(x^2+1) dx+int C/(x+1) dx+int D/(x-1) dx

int 2/(x^4-1) dx =int(-1)/(x^2+1) dx+int (-1/2)/(x+1) dx+int (1/2)/(x-1) dx

int 2/(x^4-1) dx=-tan^-1 x-1/2ln(x+1)+1/2ln(x-1)+C_0

God bless....I hope the explanation is useful.