How do you integrate int 18/ ( x^2 (x+3) ) dx using partial fractions?

1 Answer
Feb 9, 2016

int18/(x^2(x+3))dx=-2ln|x| -6/x + 2ln|x+3| + C

Explanation:

Using partial fraction decomposition:

18/(x^2(x+3)) = A/x + B/x^2 + C/(x+3)

=> 18 = Ax(x+3) + B(x+3) + Cx^2

= (A+C)x^2 + (3A+B)x + 3B

=>{(A+C=0),(3A+B=0),(3B=18):}

=>{(A=-2),(B=6),(C=2):}

=>18/(x^2(x+3)) = -2/x+6/x^2+2/(x+3)

=>int18/(x^2(x+3))dx = int-2/x+6/x^2+2/(x+3)dx

=-2int1/xdx + 6int1/x^2dx + 2int1/(x+3)dx

=-2ln|x| -6/x + 2ln|x+3| + C