How do you integrate int (13x) / (6x^2 + 5x - 6) using partial fractions?

1 Answer
Jun 14, 2016

2/3ln(abs(3x-2))+3/2ln(abs(2x+3))+C

Explanation:

Note that

6x^2+5x-6=6x^2+9x-4x-6

=3x(2x+3)-2(2x+3)

=(3x-2)(2x+3)

The partial fraction decomposition can then be set up as:

(13x)/((3x-2)(2x+3))=A/(3x-2)+B/(2x+3)

Multiplying both sides by (3x-2)(2x+3), we see that

13x=A(2x+3)+B(3x-2)

Letting x=-3/2:

13(-3/2)=A(2(-3/2)+3)+B(3(-3/2)-2)

-39/2=A(-3+3)+B(-9/2-2)

-39/2=B(-13/2)

3=B

Letting x=2/3:

13(2/3)=A(2(2/3)+3)+B(3(2/3)-2)

26/3=A(4/3+3)+B(2-2)

26/3=A(13/3)

2=A

Thus,

(13x)/((3x-2)(2x+3))=2/(3x-2)+3/(2x+3)

So,

int(13x)/(6x^2+5x-6)dx=2int1/(3x-2)dx+3int1/(2x+3)dx

=2/3int3/(3x-2)dx+3/2int2/(2x+3)dx

=2/3ln(abs(3x-2))+3/2ln(abs(2x+3))+C