Reminder
x^2-1=(x+1)(x-1)
Let's perform the decomposition into partial fractions
1/(x(x^2-1)^2)=1/(x(x+1)^2(x-1)^2)
=A/x+B/(x+1)^2+C/(x+1)+D/(x-1)^2+E/(x-1)
=(A(x+1)^2(x-1)^2+B(x)(x-1)^2+C(x)(x-1)^2(x+1)+D(x)(x+1)^2+E(x)(x+1)^2(x-1))/(x(x^2-1)^2)
The denominators are the same, compare the numerators
1=A(x+1)^2(x-1)^2+B(x)(x-1)^2+C(x)(x-1)^2(x+1)+D(x)(x+1)^2+E(x)(x+1)^2(x-1)
Let x=0, =>, 1=A
Let x=1, =>, 1=4D, =>, D=1/4
Let x=-1, =>, 1=-4B, =>, B=-1/4
Coefficients of x^4
0=A+C+E, =>, C+E=-A=-1
Coefficients of x^3
0=B+D-C+E, =>, B+D=C-E=0
C=E=-1/2
Therefore,
1/(x(x^2-1)^2)=1/x+(-1/4)/(x+1)^2+(-1/2)/(x+1)+(1/4)/(x-1)^2+(-1/2)/(x-1)
So,
int(dx)/(x(x^2-1)^2)=int(dx)/x-int(1/4dx)/(x+1)^2-int(1/2dx)/(x+1)+int(1/4dx)/(x-1)^2-int(1/2dx)/(x-1)
=ln(|x|)+1/(4(x+1))-1/2ln(|x+1|)-1/(4(x-1))-1/2ln(|x-1|)+C