How do you integrate ∫1−x2(x−9)(x−5)(x+12) using partial fractions?
1 Answer
Sep 12, 2016
=−2021ln|x−9|+617ln|x−5|−143357ln|x+12|+constant
Explanation:
Let's look at the general problem:
∫ax2+bx+c(x−d)(x−e)(x−f)dx
where
We can split the integrand into partial fractions like this:
ax2+bx+c(x−d)(x−e)(x−f)=Ax−d+Bx−e+Cx−f
where
A=ad2+bd+c(d−e)(d−f)
B=ae2+be+c(e−d)(e−f)
C=af2+bf+c(f−d)(f−e)
Then:
∫ax2+bx+c(x−d)(x−e)(x−f)dx
=∫(Ax−d+Bx−e+Cx−f)dx
=Aln|x−d|+Bln|x−e|+Cln|x−f|+constant
In our example:
a=−1 ,b=0 ,c=1 ,d=9 ,e=5 ,f=−12
So:
A=−80(4)(21)=−2021
B=−24(−4)(17)=617
C=−143(−21)(−17)=−143357
So
∫1−x2(x−9)(x−5)(x+12)dx
=−2021ln|x−9|+617ln|x−5|−143357ln|x+12|+constant