How do you integrate 1x2(x9)(x5)(x+12) using partial fractions?

1 Answer
Sep 12, 2016

1x2(x9)(x5)(x+12)dx

=2021ln|x9|+617ln|x5|143357ln|x+12|+constant

Explanation:

Let's look at the general problem:

ax2+bx+c(xd)(xe)(xf)dx

where d,e,f are distinct.

We can split the integrand into partial fractions like this:

ax2+bx+c(xd)(xe)(xf)=Axd+Bxe+Cxf

where A,B,C can be determined using Heaviside's cover up method:

A=ad2+bd+c(de)(df)

B=ae2+be+c(ed)(ef)

C=af2+bf+c(fd)(fe)

Then:

ax2+bx+c(xd)(xe)(xf)dx

=(Axd+Bxe+Cxf)dx

=Aln|xd|+Bln|xe|+Cln|xf|+constant

In our example:

a=1, b=0, c=1, d=9, e=5, f=12

So:

A=80(4)(21)=2021

B=24(4)(17)=617

C=143(21)(17)=143357

So

1x2(x9)(x5)(x+12)dx

=2021ln|x9|+617ln|x5|143357ln|x+12|+constant