How do you integrate int (1-x^2)/((x-9)(x-2)(x-2)) using partial fractions?

1 Answer
Nov 14, 2017

31/49*Ln(x-2)-80/49*ln(x-9)-3/7*(x-2)^(-1)+C

Explanation:

I partitioned integrand into basic fractions,

(1-x^2)/[(x-9)*(x-2)^2]=A/(x-9)+B/(x-2)+C/(x-2)^2

After expanding denominator,

A*(x-2)^2+B*(x-2)(x-9)+C*(x-9)=1-x^2

After setting x=2, -7C=-3, so C=3/7

After setting x=9, 49A=-80, so A=-80/49

After setting x=1, A+8B-8C=0, so B=1/8*(8C-A)=31/49

Thus,

int (1-x^2)/[(x-9)*(x-2)^2]*dx

=-80/49*int (dx)/(x-9)+31/49*int (dx)/(x-2)+3/7*int (dx)/(x-2)^2

=31/49*Ln(x-2)-80/49*ln(x-9)-3/7*(x-2)^(-1)+C