How do you integrate int 1/((x+1)(x^2+2x+2)) using partial fractions?

1 Answer
Nov 22, 2016

The answer is =ln(x+1)-1/2ln(x^2+2x+2)+C

Explanation:

Let's start with the decomposition in partial fractions

1/((x+1)(x^2+2x+2))=A/(x+1)+(Bx+C)/(x^2+2x+2)

=(A(x^2+2x+2)+(Bx+C)(x+1))/((x+1)(x^2+2x+2))

So,
1=A(x^2+2x+2)+(Bx+C)(x+1)

Let x=0, =>, 1=2A+C

Let x=-1, =>, 1=A

coefficients of x^2, 0=A+B =>, B=-1

#C=-1

1/((x+1)(x^2+2x+2))=1/(x+1)+(-x-1)/(x^2+2x+2)

=1/(x+1)-(x+1)/(x^2+2x+2)

int(dx)/((x+1)(x^2+2x+2))=intdx/(x+1)-int(((x+1))dx)/(x^2+2x+2)

intdx/(x+1)=ln(x+1)

For the second integral, we use a substitution

u=x^2+2x+2

du=(2x+2)dx=2(x+1)dx

int(((x+1))dx)/(x^2+2x+2)=1/2int(du)/u=1/2lnu

=1/2ln(x^2+2x+2)

Putting it all together,

int(dx)/((x+1)(x^2+2x+2))=ln(x+1)-1/2ln(x^2+2x+2)+C