How do you integrate int ( 1/((x+1)^2+4)) dx using partial fractions?

1 Answer
Nov 9, 2016

1/2arctan((x+1)/2)+C

Explanation:

I=int1/((x+1)^2+4)dx

This isn't a job for partial fractions, it's a job for a trig substitution. Let x+1=2tantheta. This implies that dx=2sec^2thetad theta. Substituting in tells us:

I=int1/(4tan^2theta+4)(2sec^2thetad theta)=1/2intsec^2theta/(1+tan^2theta)d theta

Since 1+tan^2theta=sec^2theta:

I=1/2intd theta=1/2theta+C

Undoing the substitution x+1=2tantheta:

I=1/2arctan((x+1)/2)+C