How do you integrate int (1-2x^2)/((x-2)(x+6)(x-7)) 12x2(x2)(x+6)(x7) using partial fractions?

1 Answer
Dec 17, 2016

The answer is =7/40ln(∣x-2∣)-71/104ln(∣x+6∣)-97/65ln(∣x-7∣)+C=740ln(x2)71104ln(x+6)9765ln(x7)+C

Explanation:

Let's do the decomposition into partial fractions

(1-2x^2)/((x-2)(x+6)(x-7))=A/(x-2)+B/(x+6)+C/(x-7)12x2(x2)(x+6)(x7)=Ax2+Bx+6+Cx7

=(A(x+6)(x-7)+B(x-2)(x-7)+C(x-2)(x+6))/((x-2)(x+6)(x-7))=A(x+6)(x7)+B(x2)(x7)+C(x2)(x+6)(x2)(x+6)(x7)

Therefore,

1-2x^2=A(x+6)(x-7)+B(x-2)(x-7)+C(x-2)(x+6)12x2=A(x+6)(x7)+B(x2)(x7)+C(x2)(x+6)

Let x=2x=2, =>, -7=-40A7=40A, =>, A=7/40A=740

Let x=-6x=6, =>, -71=104B71=104B, =>. B=-71/104B=71104

Let x=7x=7, =>, -97=65C97=65C, =>, C=-97/65C=9765

So,

(1-2x^2)/((x-2)(x+6)(x-7))=(7/40)/(x-2)-(71/104)/(x+6)-(97/65)/(x-7)12x2(x2)(x+6)(x7)=740x271104x+69765x7

int((1-2x^2)dx)/((x-2)(x+6)(x-7))=int(7/40dx)/(x-2)-int(71/104dx)/(x+6)-int(97/65dx)/(x-7)(12x2)dx(x2)(x+6)(x7)=740dxx271104dxx+69765dxx7

=7/40ln(∣x-2∣)-71/104ln(∣x+6∣)-97/65ln(∣x-7∣)+C=740ln(x2)71104ln(x+6)9765ln(x7)+C