How do you integrate int (1-2x^2)/((x-2)(x+6)(x+4)) using partial fractions?

1 Answer

-7/48ln (x-2)-71/16ln(x+6)+31/12ln(x+4) + C

Explanation:

from the given
int (1-2x^2)/((x-2)(x+6)(x+4)) dx

A/(x-2)+B/(x+6)+C/(x+4) = (1-2x^2)/((x-2)(x+6)(x+4))

then

A(x+6)(x+4)+B(x-2)(x+4)+C(x-2)(x+6)

= 1 - 2x^2

then

A(x^2+10x+24)+B(x^2+2x-8)+C(x^2+4x-12)

=1-2x^2

The 3 equations are now defined

A+B+C=-2

10A+2B+4C=0

24A-8B-12C=1

Use Algebra to find A, B, C

A=-7/48

B=-71/16

C=31/12

The integral becomes:

int (-7/48)/(x-2)dx+int (-71/16)/(x+6)dx+int (31/12)/(x+4)dx

-7/48ln(x-2) -71/16ln(x+6)+ 31/12ln(x+4)