How do you integrate int (1-2x^2)/((x+1)(x+6)(x-7)) using partial fractions?

1 Answer
Mar 28, 2016

int (1-2x^2)/((x+1)(x+6)(x-7)) dx

= 1/40 ln abs(x+1) -71/65 ln abs(x+6) -97/104 ln abs(x-7) + c

Explanation:

The denominator has already been factored into distinct linear factors for us, so to construct a partial fraction decomposition we just need to find A, B and C to satisfy:

(1-2x^2)/((x+1)(x+6)(x-7)) = A/(x+1) + B/(x+6) + C/(x-7)

=(A(x+6)(x-7)+B(x+1)(x-7)+C(x+1)(x+6))/((x+1)(x+6)(x-7))

=(A(x^2-x-42)+B(x^2-6x-7)+C(x^2+7x+6))/((x+1)(x+6)(x-7))

=((A+B+C)x^2+(-A-6B+7C)x+(-42A-7B+6C))/((x+1)(x+6)(x-7))

Equating coefficients we get the system of linear equations:

{ (A+B+C=-2), (-A-6B+7C=0), (-42A-7B+6C=1) :}

Write this out as a matrix:

((1, 1, 1, -2), (-1, -6, 7, 0), (-42, -7, 6, 1))

Perform a sequence of row operations to make the left hand 3xx3 square into the identity matrix. Then the rightmost colum will give us the values of A, B and C.

Add row 1 to row 2 to get:

((1, 1, 1, -2), (0, -5, 8, -2), (-42, -7, 6, 1))

Add 42 xx row 1 to row 3 to get:

((1, 1, 1, -2), (0, -5, 8, -2), (0, 35, 48, -83))

Add 7 xx row 2 to row 3 to get:

((1, 1, 1, -2), (0, -5, 8, -2), (0, 0, 104, -97))

Multiply row 2 by -1/5 to get:

((1, 1, 1, -2), (0, 1, -8/5, 2/5), (0, 0, 104, -97))

Subtract row 2 from row 1 to get:

((1, 0, 13/5, -12/5), (0, 1, -8/5, 2/5), (0, 0, 104, -97))

Divide row 3 by 104 to get:

((1, 0, 13/5, -12/5), (0, 1, -8/5, 2/5), (0, 0, 1, -97/104))

Subtract 13/5 xx row 3 from row 1 to get:

((1, 0, 0, 1/40), (0, 1, -8/5, 2/5), (0, 0, 1, -97/104))

Add 8/5 xx row 3 to row 2 to get:

((1, 0, 0, 1/40), (0, 1, 0, -71/65), (0, 0, 1, -97/104))

So:

{ (A = 1/40), (B=-71/65), (C=-97/104) :}

Then using int 1/t dt = ln abs(t) + C we have:

int (1-2x^2)/((x+1)(x+6)(x-7)) dx

=int A/(x+1) + B/(x+6) + C/(x-7) dx

=1/40 ln abs(x+1) -71/65 ln abs(x+6) -97/104 ln abs(x-7) + c