How do you integrate int 1/[(1+x)(1-2x)] using partial fractions?

1 Answer
Mar 16, 2016

int1/((1+x)(1-2x)]dx

= 1/3ln(1+x)-1/3ln(1-2x)+c

Explanation:

To integrate, we should first convert 1/((1+x)(1-2x)) in to partial fractions. Let

1/((1+x)(1-2x))hArrA/(1+x)+B/(1-2x). Simplifying RHS

=[A(1-2x)+B(1+x)]/((1+x)(1-2x) or

=[A-2Ax+B+Bx]/((1+x)(1-2x)

=[(B-2A)x+(A+B)]/((x+3)(x-7)(x+4))

Hence B-2A=0, A+B=1 or A=1-B

Hence B-2(1-B)=0 or 3B=2 or

B=2/3 and hence A=1/3

Hence 1/((1+x)(1-2x))hArr1/(3(1+x))+2/(3(1-2x))

Hence int1/((1+x)(1-2x))dx =

int[1/(3(1+x))+2/(3(1-2x))]dx

Now one can use the identity int(1/(ax+b))dx=1/aln(ax+b)

Hence, int[1/(3(1+x))+2/(3(1-2x))]dx

= 1/3ln(1+x)+2/3xx(-1/2)ln(1-2x)+c

= 1/3ln(1+x)-1/3ln(1-2x)+c