How do you integrate f(x)=(x^3+5x)/((x^2-1)(x-3)(x+9)) using partial fractions?
1 Answer
int (x^3+5x)/((x^2-1)(x-3)(x+9)) dx
=-3/20 ln abs(x-1) -3/32 ln abs(x+1) + 7/16 ln abs(x-3) + 129/160 ln abs(x+9) + C
Explanation:
The denominator factors into distinct linear factors as:
(x-1)(x+1)(x-3)(x+9)
So we can look for a partial fraction decomposition of the form:
(x^3+5x)/((x^2-1)(x-3)(x+9))
=A/(x-1)+B/(x+1)+C/(x-3)+D/(x+9)
=(A(x+1)(x-3)(x+9)+B(x-1)(x-3)(x+9)+C(x^2-1)(x+9)+D(x^2-1)(x-3))/((x^2-1)(x-3)(x+9))
=(A(x^3+7x^2-21x-27)+B(x^3+5x^2-33x+27)+C(x^3+9x^2-x-9)+D(x^3-3x^2-x+3))/((x^2-1)(x-3)(x+9))
=((A+B+C+D)x^3+(7A+5B+9C-3D)x^2+(-21A-33B-C-D)x+(-27A+27B-9C+3D))/((x^2-1)(x-3)(x+9))
Equating coefficients, we get the following system of linear equations:
{ (A+B+C+D = 1), (7A+5B+9C-3D = 0), (-21A-33B-C-D = 5), (-27A+27B-9C+3D = 0) :}
This can be expressed in matrix form as:
((1, 1, 1, 1, 1), (7, 5, 9, -3, 0), (-21, -33, -1, -1, 5), (-27, 27, -9, 3, 0))
Perform a sequence of row operations on the matrix to get the left hand
Add/subtract multiples of the first row to/from the others to get:
((1, 1, 1, 1, 1), (0, -2, 2, -10, -7), (0, -12, 20, 20, 26), (0, 54, 18, 30, 27))
Add/subtract multiples of the second row to/from the third and fourth rows to get:
((1, 1, 1, 1, 1), (0, -2, 2, -10, -7), (0, 0, 8, 80, 68), (0, 0, 72, -240, -162))
Subtract
((1, 1, 1, 1, 1), (0, -2, 2, -10, -7), (0, 0, 8, 80, 68), (0, 0, 0, -960, -774))
Divide the
((1, 1, 1, 1, 1), (0, 1, -1, 5, 7/2), (0, 0, 1, 10, 17/2), (0, 0, 0, 1, 129/160))
Subtract row
((1, 0, 2, -4, -5/2), (0, 1, -1, 5, 7/2), (0, 0, 1, 10, 17/2), (0, 0, 0, 1, 129/160))
Add/subtract multiples of row
((1, 0, 0, -24, -39/2), (0, 1, 0, 15, 12), (0, 0, 1, 10, 17/2), (0, 0, 0, 1, 129/160))
Add/subtract multiples of row
((1, 0, 0, 0, -3/20), (0, 1, 0, 0, -3/32), (0, 0, 1, 0, 7/16), (0, 0, 0, 1, 129/160))
Hence:
{ (A=-3/20), (B=-3/32), (C=7/16), (D=129/160) :}
So:
int (x^3+5x)/((x^2-1)(x-3)(x+9)) dx
=int A/(x-1)+B/(x+1)+C/(x-3)+D/(x+9) dx
=-3/20 ln abs(x-1) -3/32 ln abs(x+1) + 7/16 ln abs(x-3) + 129/160 ln abs(x+9) + "constant"