How do you integrate f(x)=(x^2+x)/((x^2-1)(x-4)(x-9))f(x)=x2+x(x21)(x4)(x9) using partial fractions?

1 Answer
Jul 29, 2016

int (x^2+x)/((x^2-1)(x-4)(x-9)) dxx2+x(x21)(x4)(x9)dx

= 1/24 ln abs(x-1) - 4/15 ln abs(x-4)+9/40 ln abs(x-9) + C=124ln|x1|415ln|x4|+940ln|x9|+C

Explanation:

(x^2+x)/((x^2-1)(x-4)(x-9))x2+x(x21)(x4)(x9)

=(x^2+x)/((x-1)(x+1)(x-4)(x-9))=x2+x(x1)(x+1)(x4)(x9)

=A/(x-1)+B/(x+1)+C/(x-4)+D/(x-9)=Ax1+Bx+1+Cx4+Dx9

Use Heaviside's cover-up method to find:

A = ((1)^2+(1))/(((1)+1)((1)-4)((1)-9)) = 2/((2)(-3)(-8)) = 1/24A=(1)2+(1)((1)+1)((1)4)((1)9)=2(2)(3)(8)=124

B = ((-1)^2+(-1))/(((-1)-1)((-1)-4)((-1)-9)) = 0/((-2)(-5)(-10)) = 0B=(1)2+(1)((1)1)((1)4)((1)9)=0(2)(5)(10)=0

C = ((4)^2+(4))/(((4)-1)((4)+1)((4)-9)) = 20/((3)(5)(-5)) = -4/15C=(4)2+(4)((4)1)((4)+1)((4)9)=20(3)(5)(5)=415

D = ((9)^2+(9))/(((9)-1)((9)+1)((9)-4)) = 90/((8)(10)(5)) = 9/40D=(9)2+(9)((9)1)((9)+1)((9)4)=90(8)(10)(5)=940

So:

int (x^2+x)/((x^2-1)(x-4)(x-9)) dxx2+x(x21)(x4)(x9)dx

= int 1/(24(x-1))-4/(15(x-4))+9/(40(x-9)) dx=124(x1)415(x4)+940(x9)dx

= 1/24 ln abs(x-1) - 4/15 ln abs(x-4)+9/40 ln abs(x-9) + C=124ln|x1|415ln|x4|+940ln|x9|+C