Let (x^2+x)/((3x^2+2)(x+7))=(Ax+B)/(3x^2+2)+C/(x+7)
Hence x^2+x=(Ax+B)(x+7)+C(3x^2+2)
or x^2+x=Ax^2+7Ax+Bx+7B+3Cx^2+2C
and comparing coefficients on both sides
A+3C=1, 7A+B=1 and 7B+2C=0
the solution for these simiultaneous equations is
A=23/149, B=-12/149 and C=42/149
Hence int(x^2+x)/((3x^2+2)(x+7))dx
= int[1/149{(23x-12)/(3x^2+2)+42/(x+7)}]dx
= 1/149int(23x-12)/(3x^2+2)dx+42/149int1/(x+7)dx
We know int1/(x+7)dx=ln|x+7| and also int1/(x^2+a^2)dx=1/atan^(-1)(x/a)+c.
For int(23x-12)/(3x^2+2)dx let us assume u=3x^2+2 and then du=6xdx
hence int(23x-12)/(3x^2+2)dx=23/6int(6x)/(3x^2+2)dx-4int1/(x^2+2/3)dx
= 23/6int(du)/u-4sqrt(3/2)tan^(-1)(x/(sqrt(2/3)))
= 23/6ln|3x^2+2|-2sqrt6tan^(-1)((sqrt3x)/(sqrt2))
Hence int(x^2+x)/((3x^2+2)(x+7))dx
= 23/6ln|3x^2+2|-2sqrt6tan^(-1)((sqrt3x)/(sqrt2))+ln|x+7|+c