How do you integrate f(x)=x2(x2+5)(x3)(x1) using partial fractions?

1 Answer
Dec 22, 2016

The answer is =112ln(x1)+128ln(x3)584ln(x2+5)4215arctan(x5)+C

Explanation:

Let's perform the decomposition into partial fractions

x2(x1)(x3)(x2+5)=Ax1+Bx3+Cx+Dx2+5

=A(x3)(x2+5)+B(x1)(x2+5)+(Cx+D)(x1)(x3)(x1)(x3)(x2+5)

Therefore,

x2=A(x3)(x2+5)+B(x1)(x2+5)+(Cx+D)(x1)(x3)

Let x=1, , 1=12A, , A=112

Let x=3, , 1=28B, , B=128

Coefficients of x3, , 0=A+B+C

C=542

Let x=0, , 2=15A5B+3D

3D=15A+5B2=1512+5282=47

D=421

Therefore,

x2(x1)(x3)(x2+5)=112x1+128x3+542x421x2+5

=112x1+128x31425x+8x2+5

So,

I=(x2)dx(x1)(x3)(x2+5)=112dxx1+128dxx3142(5x+8)dxx2+5

=112ln(x1)+128ln(x3)142(5xdxx2+5+8dxx2+5)

Let u=x2+5, , du=2xdx

xdxx2+5=12duu=12lnu=12ln(x2+5)

Let v=x5, , dv=dx5

8dxx2+5=85dvv2+1

Let v=tanθ, dv=sec2θdθ

and 1+tan2θ=sec2θ

So,

85dvv2+1=85(sec2θsec2θdθ)

=85θ=85arctanv=85arctan(x5)

Putting it all together

I=112ln(x1)+128ln(x3)584ln(x2+5)4215arctan(x5)+C