Let's perform the decomposition into partial fractions
x−2(x−1)(x−3)(x2+5)=Ax−1+Bx−3+Cx+Dx2+5
=A(x−3)(x2+5)+B(x−1)(x2+5)+(Cx+D)(x−1)(x−3)(x−1)(x−3)(x2+5)
Therefore,
x−2=A(x−3)(x2+5)+B(x−1)(x2+5)+(Cx+D)(x−1)(x−3)
Let x=1, ⇒, −1=−12A, ⇒, A=112
Let x=3, ⇒, 1=28B, ⇒, B=128
Coefficients of x3, ⇒, 0=A+B+C
C=−542
Let x=0, ⇒, −2=−15A−5B+3D
3D=15A+5B−2=1512+528−2=−47
D=−421
Therefore,
x−2(x−1)(x−3)(x2+5)=112x−1+128x−3+−542x−421x2+5
=112x−1+128x−3−1425x+8x2+5
So,
I=∫(x−2)dx(x−1)(x−3)(x2+5)=112∫dxx−1+128∫dxx−3−142∫(5x+8)dxx2+5
=112ln(∣x−1∣)+128ln(∣x−3∣)−142(5∫xdxx2+5+8∫dxx2+5)
Let u=x2+5, ⇒, du=2xdx
∫xdxx2+5=12∫duu=12lnu=12ln(∣x2+5∣)
Let v=x√5, ⇒, dv=dx√5
8∫dxx2+5=8√5∫dvv2+1
Let v=tanθ, dv=sec2θdθ
and 1+tan2θ=sec2θ
So,
8√5∫dvv2+1=8√5∫(sec2θsec2θdθ)
=8√5θ=8√5arctanv=8√5arctan(x√5)
Putting it all together
I=112ln(∣x−1∣)+128ln(∣x−3∣)−584ln(x2+5)−421√5arctan(x√5)+C