How do you integrate f(x)=(x^2-2x)/((x^2-3)(x-3)(x-8)) using partial fractions?

1 Answer
Dec 5, 2017

int (x^2-2x)/[(x^2-3)(x-3)(x-8)*dx]

=5/122Ln(x-8)+(21+5sqrt3)/732ln(x+sqrt3)-1/10Ln(x-3)-(21-5sqrt3)/6ln(x-sqrt3)+C

Explanation:

I decomposed into basic fractions,

(x^2-2x)/[(x^2-3)(x-3)(x-8)]

=(Ax+B)/(x^2-3)+C/(x-3)+D/(x-8)

After expanding denominator,

(Ax+B)(x-3)(x-8)+C(x^2-3)(x-8)+D(x^2-3)(x-3)=x^2-2x

Set x=3, -30C=3, so C=-1/10

Set x=8, 305D=48, so D=48/305

Set x=0, 24B+24C+9D=0, so B=-C-3/8*D=5/122

Set x=2, 14A+14B+14C+4D=-1, so A=-7/122

Hence,

int (x^2-2x)/[(x^2-3)(x-3)(x-8)*dx]

=-1/122int ((7x-5)*dx)/(x^2-3)-1/10int (dx)/(x-3)+5/122int (dx)/(x-8)

=5/122Ln(x-8)-1/10Ln(x-3)+C-1/122*int ((7x-5)*dx)/(x^2-3)

Now I solved last integral,

int ((7x-5)*dx)/(x^2-3)

=int ((7x-5)*dx)/[(x+sqrt3)(x-sqrt3)]

=(21-5sqrt3)/6int (dx)/(x-sqrt3)-(21+5sqrt3)/6int (dx)/(x+sqrt3)

=(21-5sqrt3)/6ln(x-sqrt3)-(21+5sqrt3)/6ln(x+sqrt3)

Thus,

int (x^2-2x)/[(x^2-3)(x-3)(x-8)*dx]

=5/122Ln(x-8)+(21+5sqrt3)/732ln(x+sqrt3)-1/10Ln(x-3)-(21-5sqrt3)/6ln(x-sqrt3)+C