How do you integrate #f(x) = e^-|13x|#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Harish Chandra Rajpoot Jul 25, 2018 see answer below Explanation: Given function: #f(x)=e^{-|13x|}# 1) If #x<0# #\implies f(x)=e^{13x}# #\\int f(x)\ dx# #=\int e^{13x}\ dx=1/13e^{13x}+C# 1) If #x ge 0# #\implies f(x)=e^{-13x}# #\\int f(x)\ dx# #=\int e^{-13x}\ dx=-1/13e^{-13x}+C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1804 views around the world You can reuse this answer Creative Commons License