How do you integrate f(x) = e^-|13x|? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Harish Chandra Rajpoot Jul 25, 2018 see answer below Explanation: Given function: f(x)=e^{-|13x|} 1) If x<0 \implies f(x)=e^{13x} \int f(x)\ dx =\int e^{13x}\ dx=1/13e^{13x}+C 1) If x ge 0 \implies f(x)=e^{-13x} \int f(x)\ dx =\int e^{-13x}\ dx=-1/13e^{-13x}+C Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 1995 views around the world You can reuse this answer Creative Commons License