How do you integrate #f(t) = 1.4e^(0.07t)#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer sankarankalyanam Oct 23, 2017 # int 1.4e^(0.07t) do = 20 e^(0.07t)# Explanation: #f(t) = int 1.4e^(0.07t)dt# #= (7/5) inte^((7t)/100) dt# #u = (7t)/100, du = ((7t)/100)dx, dx = (100/7)du# Apply constant multiple rule, #f(t) = (cancel(7/5)cancel(100/7)) 20 int e^u du# #f(t) = 20 int e^u du = 20e^u# But #e^u = e^(0.07)# #:. int 1.4 e^(0.07t) dt = 20 e^(0.07t)# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1549 views around the world You can reuse this answer Creative Commons License