How do you integrate e^x / sqrt(1-e^(2x)) dx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Ratnaker Mehta Jun 20, 2016 arcsin(e^x)+C. Explanation: We use Method of Substitution : Let e^x=t, so that, e^xdx=dt. Also, note that, e^(2x)=t^2. Hence, I=inte^x/sqrt(1-e^(2x))dx=int1/sqrt(1-t^2)dt=arcsint=arcsin(e^x)+C. Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 47283 views around the world You can reuse this answer Creative Commons License