How do you integrate (e^(x-2))^2/e^(2x)?

2 Answers
Oct 1, 2016

Use properties of exponents to rewrite.

Explanation:

(e^(x-2))^2 = e^(2(x-2)) = e^(2x-4) = e^(2x)e^(-4)

So (e^(x-2))^2/e^(2x) = (e^(2x)e^-4)/e^(2x) = e^-4

Thus int (e^(x-2))^2/e^(2x) dx = int e^-4 dx = x e^-4 +C

Oct 1, 2016

x/e^4 + c

Explanation:

int(e^(x-2))^2/e^(2x) dx = int(e^(2x-4))/e^(2x) dx

= inte^(2x)/(e^(2x)*e^4) dx

= int cancel(e^(2x))/(cancel(e^(2x))e^4) dx

Thus the integral reduces to:

int 1/e^4 dx

Since 1/e^4 is a constant:

= 1/e^4 int dx = 1/e^4*x +c

=x/e^4 + c