How do you integrate # (e^(2x-1))-1#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Eddie Jul 20, 2016 #= 1/2e^(2x-1)- x + C# Explanation: #int \ (e^(2x-1))-1 \ dx# #= int \ d/dx(1/2e^(2x-1))-1 \ dx# #= 1/2e^(2x-1)- x + C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 4140 views around the world You can reuse this answer Creative Commons License