How do you integrate 9x2+1x2(x2)2 using partial fractions?

1 Answer
Feb 28, 2017

The answer is =14x374(x2)+14ln(|x|)14ln(|x2|)+C

Explanation:

We perform the decomposition into partial fractions

9x2+1x2(x2)2=Ax2+Bx+C(x2)2+Dx2

=A(x2)2+B(x(x2)2)+C(x2)+D(x2(x2))x2(x2)2

As the denominators are the same, we compare the numerators

9x2+1=A(x2)2+B(x(x2)2)+C(x2)+D(x2(x2))

Let x=0, , 1=4A, , A=14

Let x=2, , 37=4C, , C=374

Coefficients of x2

9=A4B+C2D

Coeficients of x,

0=4A+4B, , B=A=14

141+3742D=9

2D=374349=3449=24=12

D=14

So,

9x2+1x2(x2)2=14x2+14x+374(x2)2+14x2

Therefore,

(9x2+1)dxx2(x2)2=14dxx2+14dxx+374dx(x2)214dxx2

=14x374(x2)+14ln(|x|)14ln(|x2|)+C